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Abstract. The dynamics of a population inhabiting a heterogeneous environment
are modelled by a diffusive logistic equation with spatially varying growth rate.
The overall suitability of an environment is characterized by the principal
eigenvalue of the corresponding linearized equation. The dependence of the
eigenvalue on the spatial arrangement of regions of favorable and unfavorable
habitat and on boundary conditions is analyzed in a number of cases.
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0. Introduction, modelling, and interpretation

One of the major problems in mathematical ecology is that of describing the
effects of spatial dispersal and environmental heterogeneity on the dynamics of
populations. A particular aspect of the problem which is of practical importance
in refuge design, pest control, and environmental planning is that of determining
how the spatial arrangement of favorable and unfavorable habitats affects the
overall suitability of an environment for a given population. Our objectives in
this article are to use mathematical models to examine which arrangements are
most or least favorable in a number of specific situations and then to draw some
general conclusions about the significance of various environmental factors by
comparing or contrasting different concrete situationis. Qur models for popula-
tion dynamics are reaction-diffusion equations with spatially varying coefficients.
Such models and their discrete analogues form one of the main classes of models
for spatial effects in population dynamics; the other main class consists of models
based on island biogeography theory. The advantages of using reaction-diffusion
equations as our models are that they can be tailored to fit vairous biological
hypotheses via relatively minor adjustments of the coefficients or boundary
conditions, and that they operate at the species rather than community level. We
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draw our specific conclusions in a number of special cases by observing how
small adjustments affect the predictions of the model. A typical question we
address is whether it is better for a population inhabiting an environment
containing regions of favorable habitat and regions of unfavorable habitat to
have the favorable regions located near the boundary of the environment or far
away from the boundary. The answer turns out to depend on the modelling
assumptions in a fairly delicate way. We draw our general conclusions by taking
an overview of the various special cases. The most striking of the general
conclusions is that relatively small changes in the modelling assumptions can
have a dramatic effect on the predictions of the model. The practical biological
conclusion is that efforts toward refuge design or pest control must be based on
a detailed knowledge of the biology of the populations being considered, and
that no single approach can be expected to be effective in all situations. Such
conclusions have been drawn before, but not on the basis of the type of models
we consider here. .

The approach we take to modelling the growth and spread of populations is
based on ideas introduced in the pioneering work of Skellam [12]. Skellam
assumed that the population would disperse through a region Q via random
walks or Brownian motion and would grow according to a linear or logistic
growth law with coefficients that might vary with location, The most general sort
of models he considered took the form

u, =d du + m(x)u — c(x)u®> in £ x (0, ), (0.1)

supplemented with boundary conditions on 82 x (0, o) with d > 0 representing
the rate of diffusion, m(x) the intrinsic rate of population growth or decay at the
point x, ¢(x) > 0 the carrying capacity at x, and u the density of the population.
Typical boundary conditions would be u =0 on 8%, corresponding to a com-
pletely hostile exterior region, du/én =0 on 89, corresponding to the boundary
acting as a perfect barrier to the population, or fu - du/on = 0 on 48 for some
B >0, corresponding to a situation where some members of the population that
reached the boundary of Q would die and others would turn back. (A slightly
different modelling approach leading to equivalent boundary conditions, at least
for steady state solutions, is given in [5].) Models similar to (0.1) have been
widely used in population dynamics; for further discussion and references, see
[4,10]. Because of the limitations of the analytical techniques available to
Skellam when he considered models such as (0.1) in 1951, he was only able to
treat certain special cases where the coefficients were constants and the domain

Q had simple geometry. A typical result of [12] is that the simple model
wy=dAu+mu on {(x,y): x*>+y*<R? x (0, 00),
u=0 on {(x, ): x*+ y* = R?} x (0, 00), (02)

predicts growth of the population if d <m/2,, and decay if d > m/A,, where A,
is the first eigenvalue for the problem '

—4¢ =129 on {(x,): x*+y*<R?,
$=0  on {(x,y): x*+y*=R%,

that is, 4, = j3/R? where j, is the first zero of the Bessel function J,(r). A similar
but distinct point of view was taken by Ludwig et al. [5] in their study of the
minimal domain size needed to sustain a refuge or an outbreak for the spruce
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budworm. They considered a model of the form
w,=du.. +fu) on (0,1) x (0, ),

with boundary conditions as described above, where f(u)=u —u?/Q —u?/
R(1 + u?) for some constants Q and R. They also gave a discussion of diffusive
logistic equations. Their analysis was based on determining the existence or
nonexistence of nonzero steady states for their models. Their conditions for
existence of a small (refuge) nonzero steady state for the spruce budworm or any
nonzero steady state for the diffusive logistic equation were similar to those given
in [12] in that they required 4 to be smaller than the reciprocal of the first
eigenvalue of the operator —d?/dx? subject to the given boundary conditions.
Since the size of that eigenvalue depends on the length of the spatial interval
(0, 1), their results gave information on the minimum size of regions that could
sustain nonzero populations. Murray and Sperb [8] extended some of the resuits
of [5] to cases where the domain was two dimensional and where the population
was subject to drift due to winds or currents rather than dispersing via pure
diffusion. Many of their results were essentially estimates of the first eigenvalues
of the elliptic operators describing the dispersal of the populations under
consideration. Our modelling approach follows the general lines of those in
[5, 8, 12], but we focus our attention more closely on the effects of variations in
habitat quality as described by m(x) and on the interaction of variations in m(x)
with boundary effects.

We use models of the form (0.1) to describe the dynamics of our populations.
We have shown in [2] that such models predict persistence if d < 1/4,(m) and
extinction if d = 1/4, (m), where A,(m) is the principal eigenvalue of the problem

—4¢ = m(x)¢ in Q, (0.3)

subject to the same boundary conditions that are imposed on the population
density. Our models differ from those of [5, 8] in that we allow m(x) to change
sign in £2. (That a problem such as (0.3) admits a principal eigenvalue even when
m(x) may change sign is not obvious, but can be derived from variational
principles under appropriate hypotheses; see [1, 2, 3, 7].) We introduce the spatial
variation in m(x) because we wish to study how the arrangement of favorable
(m(x) > 0) and unfavorable (m(x) < 0) habitats affects the dynamics of a popula-
tion. Following [5, 8, 12] we use the principal eigenvalue A,(m) of (0.3) as a
measure of overall environmental suitability for the population. The larger the
value of A,(m), the smaller the diffusion coefficient 4 must be to allow persis-

" tence; in fact, in [2] we obtained estimates in terms of the quantity —d + 1/4,(m)
on the size of steady state populations when (0.1) admits steady states and on the
rate of decrease of the population in situations where (0.1) predicts extinction.
Similar sorts of results in different contexts are also given in [5, 8, 12]; in view of
those, the use of i,(m) as a measure of environmental suitability seems reason-
able.

In the present article we closely examine a number of situations where the
spatial domain for the population is one dimensional and where the local growth
rate of the population is piecewise constant, that is, m(x) = m, > 0 on part of the
domain and m(x) = —m, <0 on the remainder. We derive estimates which
suggest the following conclusions: generally, it is better for the population to
have a few large regions of favorable habitat than a great many small ones
closely intermingled with unfavorable regions; however, the location of the
favorable and unfavorable regions relative to the boundary also has a significant
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effect on the suitability of the overall environment, and the nature of the
arrangements relative to the boundary which are best for the population varies
with the type of boundary conditions the population is assumed to satisfy. Since
we shall find that changing the assumptions on the boundary can change the
most favorable arrangement in a given class to the least favorable, it is clear that
a great deal of attention must be given to details of the underlying biology if we
wish to obtain accurate environmental assessments from mathematical models.
The importance of detailed biological information has been discussed at length in
the biological literature on conservation; see for example [13]. One of the
objectives of this article is to show how some of that complex dependence on fine
details is reflected even in relatively simple mathematical models.

We note that our conclusions are spiritually similar to those in Seno [11].
Seno studied the persistence of a population distributed over patches in a one
dimensional environment. He assumed there was precisely one patch (which he
called a singular patch) within which emigration and growth rates were different
from the corresponding rates within the other patches. He modelled the dynam-
ics of the population by a first-order system of linear ordinary differential
equations of the form

x(8) x, (1)
=M
x.(8) x,(0)

where n is the number of patches in the system, M is a constant n x n matrix, and
x;(?) is the population density of the ith patch of time ¢ In this context, the
population becomes extinct if all the eigenvalues of the matrix M have negative
real parts and grows infinitely otherwise. Consequently, Seno determined persis-
tence or extinction of the population in question from the sign of the maximum
real part of the eigenvalues of M and investigated the dependence of this quantity
on the location of the singular patch, the degree of difference between the growth
and extinction rates in the singular patch and the corresponding rates in the other
patches, and the total number of patches. Such models may be viewed as discrete
analogues to the linearization of the models considered in this paper in the case
of zero Dirichlet boundary conditions. Moreover, in [11] and this paper, an
eigenvalue is used to quantify the notion of environmental suitability, and the
dependence of this quantity on various environmental factors is illustrated via
particular examples. For instance, Seno noted that a region of especially favorable
or unfavorable habitat has a greater impact on the overall suitability of the
environment if it is centrally located than it does if it is near a boundary. This
conclusion is similar to those we draw in Sect. 1 of this paper. In [11], Seno did
not treat the case corresponding to Neumann boundary conditions, as that case
introduces additional technical details in the analysis of discrete models, but
remarked that consideration of the nature of the boundary or edge effects may
sometimes be biologically significant. Our results in Sect. 2 give some insight into
the sensitivity of continuous models to the nature of boundary conditions.
Another modelling approach which has been widely used to describe the
effects of habitat size and location on populations is based on the theory of
island biogeography. A fundamental work on that topic is [6]; see also [4]. In its
simplest form, island biogeography theory predicts that the number of species,
- denoted by S, on an island of area A in a hypothetical archipelago will be related
to A4 by the formula § = C4* for some positive constants C and z, with z ~0.27.
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The theoretical predictions are supported by data from various island chains,
with values of z typically ranging between 0.20 and 0.35; see [6]. Such results and
observations suggest that at the community level, one large preserve may be a
better refuge than several smaller preserves of the same habitat type. Some
empirical support for that viewpoint is given in [9], but it has also been criticized
on various grounds as being oversimplified or sometimes inappropriate; see [13]
for a discussion and references to the ecological literature. The models we discuss
describe populations rather than communities, but they partially support the sort
of conclusions which have been drawn from island biogeography. However, our
models also suggest that sometimes a few smaller preserves may form a more
effective refuge than a single larger preserve, depending on location, boundary
effects, or other environmental details. An advantage of our modelling approach
is that we can “fine tune” our models to some extent to explore the interactions
of geographical effects. A disadvantage to both our viewpoint and that of island
biogeography is that while the populations involved may be viewed as dynamic,
the environment must generally be regarded as static. Thus, neither approach is
really suitable for describing “fugitive species” which typically inhabit transi-
tional environments; again, see [13] for a biological discussion. Probably some
new modelling and analysis will be needed to treat situations where both spatial
and temporal variation in the environment are important.

We shall now state and interpret our mathematical results. Some of these are
taken from [2], which includes a fairly complete analysis of the theoretical
aspects of models such as (0.1). The remainder are derived in the later sections
of the present article. The analysis in [2] is moderately technical, but that used
here is elementary, being based primarily on applications of calculus and the
properties of trigonometric and hyperbolic functions. We shall sometimes need
to refer to the spaces L”(Q) of functions on £ whose pth powers are integrable;
for u € L7(2), we denote the norm of u in L7(Q) by |u], = (Jo |uff dx)'* for
1<p < oo, with |lu],, being the essential supremum of u|. (If u > 0 represents
a population density, [|u|, represents the total population and ||, represents
the maximum density if such a maximum exists.)

Result. Suppose that Q is a bounded region in 1,2, or 3 dimensional space, ¢
and d are positive constants, and m(x) is a bounded measurable function with
m(x) >0 on a set of positive measure. (We will primarily be concerned with the
case where @ is an interval and m(x) is piecewise constant with m(x) >0 on a
subinterval.) Let 4 denote the operator d%/dx? in one dimension or the Laplacian
in two or more dimensions. The model (0.1) with boundary condition u = 0 on
09 x (0, w0) has a positive steady state which is a global attractor for nontrivial
nonnegative solutions if and only if d < 1/4,(m), and |u |, — 0 exponentially with
rate proportional to —d 4 1/A;(m) as t— oo for any nonnegative solution of
(0.1) if d > 1/A,(m), where A;(m) is the smallest positive eigenvalue of the linear
problem (0.3) with boundary condition ¢ =0 on 9%.

Remarks. The results on (0.1) are proved in [2], where it is also shown that the
steady states determine the dynamics. The existence of positive eigenvalues for
(0.3) under homogeneous Dirichlet boundary conditions follows from results of
[3, 7]. The first positive eigenvalue of (0.3) is characterized by its possession of a
positive eigenfunction; that can be deduced from the variational formulation of
the problem as in the classical case. An analysis similar to that of [2, 3, 7] could
be given for mixed boundary conditions of the type fu -+ dufén=0 on
092 % (0, c0) with B > 0. The case of the Neumann or no-flux boundary condi-
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tion du/6n = 0 is somewhat different. In that case, (0.3) does not admit a positive
eigenvalue with positive eigenfunction unless m(x) changes sign in Q and
fam(x) dx < 0; see [1]. If [, m(x) dx < 0 but m(x) > 0 on a set of positive measure
then the conclusions stated above for (0.1) under the boundary condition u =0
on 92 x (0, w0) could be extended to the case du/on =0 on 4Q x (0, o). The
specific form of density dependence shown in (0.1) is not crucial; many results in
[2] are given for growth terms of the form f(x, u)u where f(x, 0) changes sign in
Q and f(x, u) is decreasing with respect to u. If f(x, 1) admits depensation, that
is, if f(x, u) increases in u for some ranges of « and/or x, then the derivations in
[2] are no longer valid; however, the sign of —d + 1/4, (m) still determines the local
stability or instability of the extinction state. ’

Interpretation. The quantity —d + 1/,(m) is crucial in deciding the predictions
of (0.1), and in particular the model predicts persistence for the population if
~d +1/4,(m) > 0 and extinction if —d + 1/4,(m) < 0. On that basis it is reason-
able to use —d -+ 1/4,(m) as a measure of overall environmental suitability. Since
—d +1/A,(m) depends inversely on 1,(m) for fixed d, large values of Ay(m)
correspond to relatively unsuitable environments for the population modelled in
(0.1) while a small value of 4, () correspond to more suitable arrangements. (The
steady states of (0.1) determine the dynamics of the model, so our population need
not be near equilibrium for the analysis to be valid; however, the environment
must be in equilibrium. The results of [2] could probably be extended to some time
periodic models, but not to models for more peneral time dependent environ-
ments.)

Result. Suppose that {m;(x)} is a sequence of bounded measurable functions on
£2 with m;(x) > 0 on a set of positive measure for each j and with Im;(x)| < M for
some constant M and all j. If A,(m,) is the principal eigenvalue for (0.3)
with growth rate m;(x), then 1, (m)—>c0 as j—oo if and only if
lhjn sup fq m;(x){(x) dx < 0 for all nonnegative integrable functions y(x) on Q.

Remarks. This is Theorem 3.1 of [2]; we derive a number of related results in that
article,

Interpretation. The condition lim sup ) m; (Y(x) dx < 0 for all ¢ > 0 says essen-
-]

tially that the average value of the functions m; over any subset of £ goes to zero
or becomes. negative for j taken sufficiently large. Clearly this can occur if the
growth rates m, decrease toward zero uniformly on Q so that there is eventually
nowhere that the population can grow. It can also occur if the functions m;(x)
maintain large positive values at some points but have corresponding negative
values at others, with the positive and negative regions closely intermingled. For
example, {7 sin(jx)(x)dx —0 as j— oo for any integrable y(x). Although
sin(jx) =1 at some points of [0, 7] for all j, the average of sin(jx) on any
subinterval goes to zero as j — oo and sin(jx) becomes more highly oscillatory.
The biological significance of such a result is that even if some fixed percentage
of a region is maintained as favorable habitat for some population modelled by
(0.1), the model will still predict extinction if the favorable regions are too smail
and too close to unfavorable regions. Thus, it is not only the amount of favorable
habitat but also its arrangement that determines the overall suitability of the
environment. This interpretation tends to support the viewpoint that a few large
reserves may be more effective for conservation than a great many small ones;
however, the size at which reserves will lose their effectiveness may be very
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small. Numerical experiments indicate that several medium sized preserves may
sometimes represent a better refuge (as measured by A,(m) and related quanti-
ties) than a single large preserve. One reason for this, noted in the next results,
is the presence of boundary effects in the model. Since boundary effects are likely
to be present in real situations, it is important to consider them in our models.

Results. Let 2 be the one dimensional interval (0, 1). First suppose that
m(x) =m, >0 on a single subinterval of length T and m(x) = —m, <0 on the
remainder of (0, 1). Under the boundary condition ¢ =0 at x =0, 1, the smallest
value of A,(m(x)) with m(x) so restricted occurs when the subinterval where m is
positive is at the center of the interval (0, 1) and the largest value of A,(m) occurs
when this subinterval is at one of the ends of the larger interval. Next, suppose
that the region where m(x) = —m, <0 is a single subinterval of length 1 — T,
with m(x) =m, >0 elsewhére. Under the same boundary conditions on ¢, the
smallest value for 4, (m(x)) with m(x) now restricted in that way occurs when the
subinterval where m(x) is negative is at one of the ends of the larger interval
0, 1.

Remarks. These results are derived in Sect. 1 of this article. The derivations give
some additional mathematical detail. (In the derivation we assume that m, has
been rescaled to the value 1; there is no loss of generality with such a rescaling.)

Interpretation. The above results indicate that under boundary conditions associ-
ated with a completely hostile exterior region a single favorable region in the
center is more suitable than a single favorable region of the same size near the
boundary, and that in turn is more suitable than a pair of favorable regions of
the same total size with both favorable regions at the boundary. A graphical
description is given in Fig. 1. It is not too surprising that centering the favorable
interval gives a more suitable environment than locating it at a boundary, since
the unfavorable interior regions can insulate the population somewhat from the
completely hostile exterior if the favorable region is far from the boundary.
Similarly, a single favorable region in contact with the boundary is better than
two separate favorable regions both in contact with the boundary. We shall see
that if we replace the assumption of a lethal boundary with that of a boundary
acting as a barrier, the conclusions change radically.

Result. Again let Q be the interval (0, 1) and suppose that m(x) =m, >0 on a
single subinterval of length T and m(x) = —m, <0 on the remainder of the
interval, with m; T — m,(1 — T) < 0. Under the boundary condition 8¢ /dn =0

1 1 1 R —
0.5 0.5 0.5
0.4 8.4 0.6 D.6 3 0.2 0.4 0.6 0.8 1 0.4 0.4 0.6 [0.8 1
~0.5 -0.8 -0.5
-1 -1 -
Most favorable Intermediate l.ess favorable

Fig. 1. Comparison of the overall suitabilities of environments with different spatial arrangements of
the regions of good and bad habitat, assuming a lethal boundary
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(i.e. ¢'(x) =0) at x =0, 1, the smallest value of 4,(m(x)) with m(x) so restricted
occurs when the subinterval where m(x) is positive is at one of the ends of the
interval (0, 1) and the largest value occurs when the subinterval of positivity is in
the center of the larger interval. If we restrict m(x) so that m(x) = —m, <0 on
a single subinterval of length 1 —T and m(x) =m, >0 on the remainder of
(0, 1), then under the same boundary conditions the smallest value for 4,(m(x))
occurs when the subinterval where m is negative is at one of the ends of (0, 1).

Remarks. These results are derived in Sect. 2. The requirement
m T —my(1 —T) <0 is imposed so that [} m(x)dx <0 and hence A,(m(x))
exists; see [1]. Again, in the derivation, we have rescaled m(x) so that m,=1.

Interpretation. Under boundary conditions describing a boundary that acts as a
perfect barrier, a single favorable region near the boundary provides a more
suitable overall environment than either a single favorable region far from the
boundary or a pair of favorable regions of the same total size lying near the
boundary but separated by an unfavorable region. A graphical description is
given in Fig. 2. An especially interesting observation is that in the situation
where there is a single favorable interval, the arrangement best for the popula-
tion under the assumption of a deadly boundary is the worst arrangement under
the assumption that the boundary acts as a barrier. The obvious question of
deciding what happens in intermediate cases is addressed in the next result.

Result. Suppose that m(x) =1 on a subinterval of length T of (0,1) and
m(x) = —1 elsewhere. Suppose that A,(m) is the principal eigenvalue for (0.3)
under the boundary condition fi¢ + d¢/0n =0 on 62 (ie. fp —¢p'=0at x =0
and B¢ + ¢’ =0 at x =1) for some f > 0. If 0 < f < n/2T then the largest value
for A4,(m) occurs when the interval where m is positive is in the center of the
larger interval and the smallest value occurs when this interval is at one of the
ends. If f > n/2T then the smallest value of A,(m) occurs when the subinterval
where m is positive is in the center and the largest value when it is at one of the
ends. If f = n/2T then the location of the positive subinterval does not affect
A1 (m), which in that case is n?/4T2

Remarks. This result.is proved in Sect. 2.

Interpretation. This result indicates that for a relatively hostile exterior (B
large) the behavior of the model is similar to that corresponding to a completely
inhospitable exterior, while for a relatively benign exterior or a boundary that
acts as a moderately effective barrier, the behavior is similar to that correspond-

1 1 1 e
0.6 0.5 0.5
0.z 0.4 0.6 0.8 ¢ 0.4 0.4 0.6 p.8 1 0.7 0.4 0.6 0.8 1
-0.5 -0.5 -0.5
-1 g -1
Most favorable Less favorable . Less favorable

Fig. 2. Comparison of the overall suitabilities of environments with different spatial arrangements of
the regions of good and bad habitat, assuming a boundary that acts as a barrier
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ing to a boundary which acts as a perfect barrier. The difference between the
cases occurs because the detrimental effects of the unfavorable region inside
(0, 1) as measured by m(x) may be stronger or weaker than those produced by
the boundary effects, as measured by §: If the level of hostility on the interior
unfavorable region is the same as that of the exterior, the location of the
favorable region becomes irrelevant, and that is reflected in the transitional case
corresponding to f = /2T.

We shall draw some general conclusions from the above results, but first we
state one more result of a slightly different nature:

Result. Suppose that m(x) has the form m(x) = —1 on (0, (1 — T)/2) and on
((1+7T)/2,1) and m(x) =k on (1~ T)/2, (1 + T)/2) where k and T are related
in such a way that [§ m(x) dx = ¢ for some fixed constant g <1, and that the
boundary condition for (1.3) is ¢ =0 on 9. If k is allowed to range between q
and 1 (so that T ranges from 1 to (1 + ¢)/2) then the largest value for Ay(m)
occurs when k =g and the smallest when k = 1.

Remarks. This is proved in Sect. 1.

Interpretation. This result indicates that in the case of a spatially heterogeneous
environment surrounded by a hostile exterior region, there are distributions of
favorable and unfavorable habitats wherein a small preserve of high quality
habitat may provide for a more suitable overall environment than a larger
preserve of favorable but lower quality habitat. Such may be due in part to the
fact that expanding the favorable region moves its edges close to the boundary.
The situation for the case of a boundary acting as a barrier is similar in a sense
but more extreme. In that case, we can only use the analysis based on Ay(m)
when [§ m(x) dx <0, so that if we increase the length of the more favorable
interval but decrease the favorability so that J§ m(x) ds remains constant we must
eventually have m(x) <0 everywhere so that no growth is possible.

We now draw some more general conclusions by surveying and synthesizing
the results described above. The first observation is that these simple models
display enough different effects and sensitivity to modelling assumptions to
describe some of the complexities of the underlying biology, and that they permit
analysis which provides both support and criticism for conclusions made from
other viewpoints. To briefly summarize the analysis, these models predict that a
preserve of moderate size and high quality can be expected to provide a better
refuge than a great many very small preserves and can sometimes provide a
better refuge than 4 larger preserve of lower quality; however, the location of
preserves also plays a role in the predictions of the models so that a single large
preserve in a relatively poor location may be less desirable than several smaller
ones in better locations, and which locations are better depends on the nature of
the boundary and exterior of the total environment being considered. Some of
these conclusions can be drawn from different modelling approaches such as
island biogeography theory (see [9]). Others have been discussed and debated to
a considerable extent from nonmathematical viewpoints (see [13] and the refer-
ences therein). Our results suggest that there is no simple criterion which permits
evaluation of a broad range of situations, but rather that several different sorts
of biological effects must be considered if we wish to make reasonable projec-
tions. That leads us to our second observation, which echoes a common theme
in the nonmathematical literature on environmental heterogeneity and refuge
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design; namely, that accurate assessment of environmental suitability requires a
knowledge of specific details of the biology and geography involved. Qur final
conclusion is that simple reaction-diffusion models can capture enough biological
detail that further investigation of such models can be expected to provide
additional insight into the effects of spatial dispersal and heterogeneity in
population ecology.

1. Homogeneous Dirichlet boundary data

We begin by supposing that T e (0, 1) is fixed and that for a €[0,1 — T,

—1 onf0,a)
my(x) =<k onfaa+T],
~1 on(a+7T,1]
where k is an arbitrary positive constant. As the map a - m, is a continuous
function from [0,1—T7] into L7[0,1],1<p <o, we know that A,(m,) is a
continuous real valued function of a, where 1,(m,) denotes the unique positive
eigenvalue of

—u"=2Amuu in(0,1),

u(0) =0 =u(1), (1.1
for which (1.1) admits a solution u(x) such that u(x) > 0 for x € (0, 1), ©’(0) >0
and u'(1) <0. . _

Moreover, we also know that according to our modelling (see Sect. 0) the
smaller the number 4, (/) the more advantageous the situation for the species in
question. The question we now pose is, for which value(s) of a €[0, 1] does

Ay(m,) obtain its minimum? Notice that we may take as eigenfunction for (1.1)
u,(x), where

sinh ad, : 0<x<a
U, (x) = Acosaﬁ(x—c), as<x<a+T
B sinh a(1 — x), a+T<x<1,

where o =./A(m,), ce(a,a+T), and 4, B>0. Matching u,(x) and u,(x)
across the interfaces at a and at a + T yields -

sinh aa = A4 cos aﬁ(a —0),
o cosh aa = —ad./k sin a./k(a — ¢)

1
0.5
a a+T 1
-0.5 Fig. 3. An example of a spatially
varying growth rate showing regions

-1 s of good and bad habitat
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and
A cos a\/lz(a + T'—¢) = Bsinha(l — (a + T)),
—ad/k sin o /k(a + T ~ ¢) = —aB cosh a(1 — (a + T)).
These equations reduce to

tanh aa = ——ﬁ cot aﬁ(a —c)

and . (1.2)
—-ﬁ cot a/k(a + T — ¢) = tanh o(1 ‘— (@a+T). '

From (1.2) it folléws that
cot oc\/I;Tz cot(ac\/l;(a +T—c)— aﬁ(a —0)) (1.3)
_cot(a/k(a + T — ¢)) cot(a/k(a — o)) + 1

B cot(aﬁ(a —¢)) — cot(a\/-l::(a +T—c)
_ k tanh[o(1 — a — T')] tanh aq ~ 1

" /k(tanh ag + tanh a(1 — a — T)

=f(a,®).

We know from the positivity of «, on (0, 1) that a & (0, n/\/l«—tT). It is of course
well known that cot(ocﬁT) is a strictly -decreasing function on (0, n/\/ET)
with lim cot(ey/kT) = + o0 and 151} cot(aﬁ:r) = —o0. If we now fix
a- et/ ST

ae[0,1-T], then it is evident that lim+ fla,®) = —oo0, and moreover,
az—+0

calculation shows that df/da(a,0) >0 for all «>0. Consequently,
for a €[0, 1 — T'] fixed, there is a unique o & (0, n/ﬁT) for which (1.3) holds.
This value is \/A,(m,) and the curves y = cot aﬁT and y = f(a, o) intersect as

indicated in Fig. 4. It is evident from Fig. 4 that if the graph of the curve
¥ =f(a, @) moves up corresponding to a change in the parameter a, then the

a-coordinate of the point of intersection of y = cot a\/I;T and y = f{(a, o) moves

3

2

t f(ct,.25)

0.5 1.5 2 2.5
[+1
-1 .
-2 Fig. 4. Graphical determination of «
in the case of a single region of

Cot(cr} pood habitat and a lethal boundary



326 R S. Cantrell and C. Cosner

to the left. Hence if 9f/0a(a, o) >0 fora e (0, © /ﬁT) and «q € I, a subinterval of
[0, 1 — T, A;(m,) decreases on I. From the quotient rule, it follows that for any
o« >0 and a € (0,1~ T), the sign of df/da(a, &) is determined by

R(a, &) = (sech® ag)(1 + k tanh? (1 —a — T))
— (sech? a(1 — g — T))(1 + k tanh? aa).
A simple calculation reveals that the auxiliary function
1 2
e =
is one-to-one on (0, 00). Then R(a, &) = 0 implies
1+ktanh®o(l—a—T) 1-+ktanh®ea
sech?a(l—a—T)  sech®oa

Since H is one-to-one, 1 —a~T =a or a = (1 — T)/2. Moreover, it is easy to
see that

lir&_ R(a, o) = 1+ k tanh? ¢(1 — T) —sech? (1 — T') >0
and
lim  R(a, o) =sech?a(1 ~T) — 1~k tanh? (1 — T) <0,

a1~ TY)=
for o >0 fixed. So &f/da(a, ) >0 for ae(0,(1—7T)/2) and x>0 and
df/da(a,«) <0 for ae((1~T)/2,1—T) and o >0. Consequently, f(a, &) in-
creases on (0, (1~ T)/2) and decreases on ((1—~1T7)/2,1-7T) for all & >0. It
follows that A,(m,) decreases steadily as a approaches the centering value
(1—-1)/2.
One may conclude that for the models

u, =du., +muu—cu? in (0, 1) x (0, c0),

u(x,0) =20 in (0, 1),

u(0,0) =0=u(1,1 in [0, o)
the situation for the population becomes progressively better as a approaches
(1 - 1T)/2. Since a = (1 — T)/2 corresponds to a centering of the region where
the growth rate is 1, these results suggest that such a strategy is the optimal
approach for preservation of a population in a habitat surrounded by a
completely inhospitable region (as indicated by homogeneous Dirichlet
boundary data), independent of the relative strength of the positive and negative
parts of the intrinsic growth rate.

So far in this section, we have dealt with the situation where the intrinsic
growth rate is positive and constant on a subinterval of [0, 1] having length T
and is equal to —1 on the remainder of [0, 1]. A complementary situation occurs
if there is a single subinterval upon which the intrinsic growth rate m = —1 and
if the intrinsic growth rate is a positive constant on the complement in [0, 1] of
this subinterval. In particular, if the regions on which the intrinsic growth rate is
positive have total length T, we may write

k on [0, a)
my(x)=<{—1 onfg,a+1-T]
k on{a+1~-T,1],
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where & > 0 is fixed and @ € {0, T]. Then there is an eigenfunction u,(x) of (1.2)
of the form : v

sin(oz\/ic_x 3 x €[0, 4]
U(x) ={y,coshox +y,sinhax, xelg,a+1—T]
C sin(ey /k(x — 1)), xela+1-T,1],

where 7,, 7, _and C are constants determined by the normalization
u,(x) = sin(aﬁx) on [0, 4] and C <0. Since u, € C'[0, 1], the values of ¥, and
¥z can be determined by matching across the interface at @ or at @ + 1 — T. This
process produces two sets of equations for y, and y,. Using these equations, we
may derive that o must satisfy

V' cosh(a(1 — T)) sin(u/&T) _ (1.4)
= ﬂ’ﬂﬁ(zl—"l)—) {(1 = k) cos(u/kT) — (1 + k) cos(or/k(2a — T))}.

We now make the change of variables s = 2a — T. Then s € [~T,T}and s =0
corresponds to having the negative part of the intrinsic growth rate centered in
(0, 1). Since my., yp(x) =M(s 1)l —x) for all xe[0,1] and se[0, T,
A(mgy ) =A(m_;, ry2). We shall therefore concern ourselves only with
sel0,T] »

We know from the previous example that if s = T, A(mg) <n/ﬁT. If
a< n/\/I;T, (1.4) is equivalent to

oy _ L1 = k) cos(/ET) — (1 + k) cos(aﬁs)}
Jk coth(a(l — 7)) = 2{ inteJiT) . (1.5)

If s = T, (1.5) reduces to ‘
coth(a(1— T)) = —./k cot a /kT. (1.6)

Since the left hand side of (1.6) is decreasing on (0, n/ﬁT) while the right hand
side is increasing on that interval, there can be at most one a* e (0, n/\/kT)
satisfying (1.6). Clearly a* = /4, (m;.).

Suppose now that there is an s € [0, T), and an « e (0, *) such that (14) is
met. Then we have

JE cotha(1 — T) = % {(1 — k) cos(a/kT) — (1 + k) cos(otﬁs)}

sin(a/kT) :

and . (1.7
I | {(1—1:) cos(@*/kT) — (1+k) cos(a*ﬁr)}
JVk coth(a*(1 — 7)) 5 dntar /RT) .

Of course, the right hand side of the second equation of (1.7) reduces to (1.6).
However, it is to our advantage to express it in the given form. Since o < a¥,

Vk coth(e(1 — 7)) > /& coth(a*(1 — T)).
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Hence,

(1 —K) cos(a/kT) — (1 + &) cos(a/ks)

sin(u\/I;T)
(1 — k) cos(a*\/kT) — (1 + k) cos(a*\/kT)
> 3
sin a*ﬁT)

which, since a <a* < n/ﬁT, implies

(1 — ) {sin(e* /KT) cos(o~/kT) — sin(e/KT) cos(x*/kT)}
> (1+ k) {sin(u*\/KT) cos(a~/ks) — sin(e/kT) cos(a*/kT)}.
Since :
a/ks <o kT <m,  cos(es/ks) > cos(e/kT).
So

14k sin(oc*ﬁT) cos(rxﬁs) >(1+4+k) sin(a*ﬁT) cos(aﬁT).
It follows that )

(1= k) sin((@* — @) /kT) > (1 + k) sin(e* — )\ /kT),
a contradiction. We conclude that if s [0, T) any solution « of (1.4) is at
least as large as /A;(m;). A slightly closer examination will show that in
fact o« > /A;(my). Hence, A;(my) = 4,(mg) < A (m,) for all a € (0, T).

The ramification for the model in case the intrinsic growth rate has value —1
on a subinterval of [0, 1] of length 1 — T and has the value k>0 on the
complement of this subinterval is that the best situation for the population
occurs when the subinterval on which the intrinsic growth rate is —1 is at either
end of [0, 1]. In the preceding example, where the intrinsic growth rate had value

k >0 on a single subinteval of [0, 1] of length T and value —1 on its comple-
ment, the situations

k on |0, T], —1 on (T, 1]
-1 on[0,1-1T), k on[l-T,1]

were the least advantageous for the population. This last fact allows us to make
a comparison which is a principal observation of this section on our model:
Recall that a population following

u, = du,, +m(x)u —cu? in (0, 1) x (0, c0)
u(x, 0) =0 in (0, 1) (1.8)
u(0,8) =0=u(l, ), in [0, c0)

can be expected to persist for all time if d < [4,(m)] ~! and to become extinct as

t becomes large if d >[4, (m)] !, where 4,(m) is the principal positive eigenvalue
of

—u,, = Am(x)u in (0, 1),
u(0) =0=u(1).



The effects of spatial heterogeneity in population dynamics 329

Observation 1.1. Suppose we consider the model (1.8) for my(x) and my(x),
with

—1 on{0,qa)
my(x) =<k onfa,a+ T
and ~1 on(@a+T,1]
(k on [0, b)
my(x) =4—1 on[bb+1—T]

k on(b+1-T,1j

for k>0,0<a<1-T,0<b<T,0<T <1 Then for any a & (0, 1—T) and
b (0, T), 2y(m,) < 4,(m,). Consequently, having the positive part of the intrin-
sic growth rate in one piece is always more advantageous to the population than
having the positive part occur in two pieces (of the same total length) which meet
. 0 and 1, respectively, provided homogeneous Dirichlet boundary data are imposed

(i.e. our one-dimensional environment is surrounded by a completely hostile
exterior). :

We have just seen that for a species inhabiting a one-dimensional environ-
ment with completely hostile exterior, the optimal location for a single refuge
of any given size is in the center of the environment. If the size of this centered
refuge is increased and its quality (as measured by the positive part of the
intrinsic growth rate m(x)) is maintained, then certainly we expect a more
advantageous situation for the population, and in fact, the model concurs. The
reason such is the case is that the intrinsic growth rate m for the smaller refuge
is less than or equal to the rate i for the larger refuge (it is well known
[2, 3, 7] that then A,(4) < A,(m)). It is more interesting to speculate about what
happens if we now compare the case of a small refuge in which the environ-
mental quality (as measured by m(x)) is very high with that of a larger one
where the environmental quality is only moderately high. To be specific, sup-
pose that m(x) has the form

¢

=1 on[0,(1-7)/2) .
m(x) =<k  on[(1—T)/2,(1+T)/2] (1.9)
—1 on ((1+T)/2,1], ‘

where k and T are positive numbers with k<1 chosen so that
fom(x) dx =kT —(1~T) =g for some fixed g < 1. The idea is to model -a
situation where we could either preserve a small region at its original quality
(so k=1 and T =(q +1)/2) or a larger region at lower quality (0 <k < | and
T =(g -+ 1)/(k + 1)). Here g represents the average quality of the environment
for 0<x <1 and we shall assume that it remains constant, forcing a trade-off
between k and T. Expressing & in terms of T, we have k = k(T )=(q+1-T)/
T. We want to have k <1, since k =1 corresponds to completely undamaged
habitat in this version of the model, so we require (g +1)/2< T. If we express
m(x) from (1.9) in terms of ¢ and T, we have

-1 on [0, (1-1T)/2)
mr(x) =3(g+1~T)/T on[(1-T)/2,(1+T)/2
—1 on ((1+1)/2,1].
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Constructing the eigenfunction u,(x) for
—u" = o’my(x)u in (0, 1), (1.10)
u(0) = 0=u(1),

it follows from the symmetry of m,(x), the boundary conditions, and the fact
that the eigenvalues for problems such as (1.10) are simple, that for (g + 1)/
2< T <1 we may choose :

sinh ax on [0, (1 —T)/2)
ur(x) =< p coslay/(g +1—T)/T(x —] on[(1—T)/2,(1+T)/2]
sinh a(1 — x) on ((1+T)/2, 1]

If we match u; and u% across x = (14 T')/2 we obtain

sinh a(1 — T)/2 = B cosfo /(g + 1 — T)/T(sz)]

and

cosha(l-T)/2= ﬁ\/(q +1-T)/T sin[a\/(q + 1~ T)/I(T/2)],
so that for (g +1)/2< T <1 we have

cotha(l — T)/2=./(g +1—T)/T tanfa/(g +1 - T)T/2}.  (1.11)

If T=1 we have k(T) =¢g and we may take u =sina./gx; then we must
have a./q =mn to satisfy the boundary conditions, so « =n/\/§. Returning
to (1.11), we observe that if g and T are fixed and T < 1, there will always
be a unique solution between zero and the first vertical asymptote of
tan(ocﬁ + 1 — T)T[2), which occurs at

a=2+(Sg+1-1)TP2) = z

g+1-DT
(See Fig. 5.) Moreover, the form of u; implies that \/4;(my(x)) is this unique

17.5]
15
12,59
10
T small
7.5
5 T large
2.5¢ T large
el mmm—— - T small
1 2 3 4 5 6 g

Fig. 5. Graphical determination of « comparing a small region of good habitat (T" small) with a
larger region of fair habitat (T large). The increasing functions are multiples of tangents; the
decreasing functions are hyperbolic cotangents
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solution. Hence 4, (m,(x)) < n%/((g + 1 — T)T). It follows immediately that for
fixed ¢ and for m,(x) of the form (1.12), the case T'= 1 yields the highest value
for a and hence for A,(m,(x)) =a? (Observe that d/dT((g +1-—T)T) =
q+1-2T<0 if (g+1)/2<T<1, so for the admissible values of
T,9<(@+1—T)T and

h(mp () < n

TIIT < g = hme).

In fact, we can say more by carefully examining what increasing T" does to
the graphs in Fig. 5. Note that df(g + 1~ T)/T}/dT = —(g + 1)/T?><0, so
increasing T between (g + 1)/2 and 1 decreases both (g+1-—T)T and
(9 +1-T)/T, and hence lowers the graph of the function on the right side of
(1.11). However, since the function cothz is decreasing, any increase in T
decreases 1 — T and hence raises the graph of the function on the left side of
(1.11). The overall effect is to increase the value of « where the curves intersect;
so we may conclude that A,(my(x)) =«? increases as we increase 7' from
(g +1)/2 to 1 while maintaining a constant average quality g. The biological
conclusion is that a smaller favorable region of high quality makes a better
refuge under our modelling assumptions than a larger favorable region of lower
quality.

2. Neumann and mixed boundary conditions

We now consider the situation where the region inhabited by our population is
not surrounded by a completely inhospitable region, but rather by a barrier or
by a region which is only somewhat inhospitable. The standard approach to
modelling such situations is to use Neumann (i.e. no-flux) boundary conditions
in the case of a barrier and to use mixed boundary conditions for the case of a
somewhat inhospitable exterior. (The modelling for the second case is discussed
in some detail in [5].) The case in which the boundary acts as a barrier is
somewhat special. Specifically, if the average environmental quality {§ m(x) dx is
positive, then under the assumption that the boundary acts as a barrier, our
models predict persistence for the population for any diffusion rate. In that
situation there is no eigenvalue corresponding to 4,. However, if f§ m(x) dx <0
then there is an eigenvalue A,(m(x)), which measures the overall suitability of
the environment as in the case of a completely hostile exterior region. (These
_ results are derived in [1].) In the case where the exterior region is somewhat
inhospitable, there will always be an eigenvalue A,(m(x)) as in the case of a
toally inhospitable exterior. We shall see that even when ﬂ, m(x) dx <0, the
way in which 4,(m(x)) depends on m(x) is different in the case where the
boundary is a barrier than in the case where the boundary is deadly (that is,
the exterior is totally inhospitable), and that the behavior of A,{(m(x)) in the
intermediate case of a somewhat inhospitable exterior region may be similar to
either of the extreme cases depending on the degree of inhospitability of the
exterior,
Let us first consider the problem

—u" =2 m,(x)u on (0, 1), 2.1
u'(0) =0=u’(1),
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where
-1 x€[0,a)
m,(x) =<k xela,a+T]
-1 xe(@+17T,1],

for some T € (0, 1/(k + 1)) (so that {} m,(x) dx <0) and a [0, 1 — T]. Again,
we set o =./4;(m,), and for a #0, 1 — T we have an eigenfunction of the form

cosh ax x {0, d]
u,(x) =<4 cos a\/l_c(x —~¢) x€la,a+ T}
B cosh a1 — x) xela+T,1),

for some ¢ € (a, a + T'). Matching u, and u/, across the interfaces and reducing
yields

cot aﬁ(a —¢) = ~\/I_c coth aa

and
cotoc\/l;(a + T —c) =\/IZ cotha(l —a—T).
Using the identity for the cotangent of a difference and simplifying, we obtain

cot a\/lszk cosh aa cosh (1 — a — T') —sinh aa sinh a(l —a — T)
Jk sinho(1—T)
= g(a, ). (2.2)
If a=0 or a=1—T, we will have only one interface, and matching across it
yields the relation cot cxﬁT = \/l; coth a(1 — T'), which is in fact the case of
(2.2) with a =0 or a = 1 — T; thus, (2.2) defines « for all a € [0, 1 — T7. Next, we
observe that as « — 0+ we have that the expressions in (2.2) approach - co with
orders of growth cot a\/I;T ~ l/oc\/fc-T and g(a, o) ~ \/E/oz(l — T) respectively.
Since we assumed 0 < 7T <1/(k + 1), we have l/T\‘/I; > \/I;/(l —~T), so that
cot uﬁT—» 400 more rapidly than g(a, o) as o« | 0. Also, we may use the
identities for products of hyperbolic sines and cosines to obtain
(k—1)cosha(l —T) + (k + 1) cosho(l —2a —T)
. 2/ksinha(1—T) '
If we now compute dg(a, a)/da, we find that the numerator redpces to
{—k—-1D1-T)+k+1)1—2a~T)sinh (1 — T) sinh a1l —2a — T)
—(k 4+ 1)(1 = T) cosh {1 — T) cosh a(1 — 2a — T)}
={—~(—1)(1-T)~ %+ 1)(1—T) cosh 2aa
— (k + Da[cosh 20(1 — a — T') — cosh 2aa]}
={~(k—-1)(1~T) -+ 1)(1 —a—T) cosh 20a
—(k + Dacosh 20(1 ~a —T)} <0

since 1 —~a-—~T2=0 and coshx > 1 for all x, where we have used various
hyperbolic identities in the reduction. Since the numerator of the derivative of a

4 (ay (Z) =
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Fig. 6. Graphical determination of « in the case of a boundary that acts as a barrier. The parameter
k measures the quality of the good habitat

quotient determines the sign, we have dg/da < 0. Thus, since cot aﬁT—» - 00
as o T n/\/kT and g(a, o) is defined for all nonzero a, we_have the situation
shown in Fig. 6 with (2.2) satisfied for some « & (0, n/\/I;T). Finally, if we
calculate dg/da, we obtain the numerator —2x(k + 1) sinh o(1 —2a — T), which
is negative for a € [0, (1 — T')/2) and positive for a € (1 — T)/2, 1 — T), so that
the graph of g(a, o) with respect to o is lowest for g = (1 — T)/2 and highest for
a =0 or a=1-T, increasing monotonically for each fixed o as a moves away
from (1—T)/2.

As we raise the graph of g(a, ) we also raise the point where it intersects the

graph of cot oc\/.l\—tT, and thereby decrease the value of « where the intersection

. occurs. The conclusion is that moving the region where m, is positive away from
the center of the interval decreases 1,(m,) = 2 monotonically until the favorable
region is at one of the ends, with one of its boundaries coinciding with either 0
or 1. Since the boundary points x = 0 and x = 1 are assumed to represent perfect -
barriers, the conclusion is not surprising biologically, although it is the reverse of
what we observed in the case of a completely hostile exterior.

We may also consider the Neuman problem (2.1) under the assumption that
the intrinsic growth rate is equal to —1 on a single subinterval of [0, 1] of length
1 — T and equal to k >0 on the remainder of [0, 1] and ask how the principal
positive eigenvalue for (2.1) varies as the subinterval is moved across [0, 1]. As
in the preceding example we need T < 1/(k + 1) in order to have a principal
positive eigenvalue in the first place. If we make this assumption, we may
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consider (2.1) with m, given by

k, xe[0,a)
my(x) =<—1, xefg,a+1~T]
’ k, xe(a+1-T,1}

and ask how A,(m,) varies as a ranges over [0, T]. We may take as eigenfunction
u,(x) given by

cos a/kx, x [0, d]
u,(x) =<{y;coshox +yp,sinhax, xelg,a+1~—7T]
B cos a/k(x — 1), xela+1-T,1],

where y;, y,, and § are uniquely determined by our choice of normalization.
By matching appropriately across the interfaces at @ and at a +1 — T, we
may conclude that « = ,/A,(m,) must satisfy

@1521;2 {(1 = k) cos a\/kT + (1 + k) cos a/k(2a — T)}
= /k cosh o1 — T) sin a.,/kT. (2.3)

Let s = 2a — T. Then a €[0, T] implies that s € [ — T, T]. Notice that Mg () =
my(1 —x) for a €[0, T] and x &[0, 1]. Consequently A,(m;_,) = A,(m,) for all
a €[0, T], and so we need only consider (2.3) for s [0, 7]. In case s = T, (2.3)
yields

\/l; cotha(l — T) =cot oc\/I;T. (2.4)

Observe that as (2.4) is the exceptional case of (2.2) as well as (2.3), we-may
appeal to Fig 6 to see that a* = /A, (m;) is the unique solution to (2.4) in the
interval (0, n/,/kT) and that if a € (0, a*), :

\/1; cotha(l — T) <cot a\/I:T.

Suppose now that 5 €[0, 7) and « (0, 2*]. Then

(1 —k) cos aﬁT+ (1 +k) cos aﬁs >(1—~k)cos ocﬁT+ (1+k) cosoc\/I;T
‘ = 2 cos a\/l-c_T.

Since a* < n/\/-IET,

(1 —k) cos a\/l;T+(1 +k) cos aﬁs
2 sin oz\/I;T
Since \/k coth a(1 — T') < cot aﬁT for @ & (0, a*), we may conclude that (2.3)

has no roots in (0, a*} if 5 € [0, T). We conclude that Ay(my) < A (m, o ryp) for
sel0,T), or equivalently, A,(m;) < ,(n,) for a e[T/2, T).

> cot oc\/I;T.
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We learn from these observations that the optimal situation for the preserva-
tion of the population in the model subject to Neumann conditions is quite
different from that in the case of a completely hostile exterior. Namely, we learn
that whether we think of varying a single subinterval of [0, 1] of length T upon
which the intrinsic growth rate is positive or think of varying a single subinterval
of length 1 — T upon which the intrinsic growth rate is negative, it is best for the
preservation of the population to have a single refuge against one of the
boundary points. In this case, if in (2.1)

-1 on[0,a)
m(x) =<k onla,a+ T]
—1 on(@+T,1]
and
k on [0, b)

my(x) =<—~1 onfbb+1~T]
k on(b+1-T,1],

forae(0,1—T)and b (0, T), we cannot immediately say which of 4,(m,) and
A1 (m;) is the smaller. In the case of a completely hostile exterior, being near the

boundary is detrimental to the population and so it is not so surprising that

A (m) < A;(m;) in that situation. But once Neumann conditions are imposed,

being near the boundary is no longer a detriment. Hence deciding which of

Ay(my) and A,(m;) is smaller is tantamount to deciding the outcome of a

competition between a refuge which is in one piece but is surrounded by

“negative” regions and a refuge in two pieces each of which has a “negative”

region only on one side.

In Sect. 1 and in the preceding part of this section, we have considered cases
corresponding to a boundary that is deadly (any individual reaching the
boundary dies) or acts as a barrier (any individual reaching the boundary returns
to the interior). In many situations, it is more realistic to suppose that the
exterior region is hostile but not necessarily immediately lethal, so that some
individuals crossing the boundary may be expected to die and other to return. A
reasonable way of modelling such a situation is to use mixed or Robin boundary
conditions, that is, to require some combination of the solution and its normal
derivative to be zero. Such conditions are discussed, for example, in [5]. The
corresponding eigenvalue problém is

—u" = Am(x)u, xe(0,1),
By(0) = y'(0) =0= fy(1) +y(1), some f >0,

where f# measures the hostility of the exterior environment. As B — 0, we recover
the conditions corresponding to an impassable boundary, while as f — oo, we
approach the conditions corresponding to a deadly boundary. If we consider the
situation where

-1 x€e[0,aq)
my(x) =<1 xela,a+T] (2.5)
-1 xe(@a+171,1]
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and let @ = ./4,(m,(x)) then we may seek an eigenfunction of the form

cosh ax + 7y sinh ox x €0, 4]
u(x) =< A cos a(x —c) xela,a+T]

B(cosha(l ~x) + & sinha(l —x)) xela+T,1],
for some ¢ € (a, a + T). To satisfy the boundary conditions at x =0 and x =1
we must have y = § = f/u. If we match at x =a and x = a + T we obtain

o cosh aa + B sinh aa

cotafa —c) = _<rx sinh aa + B cosh oca)’ _
_oacosha(l—a~T)+fsinha(l—a—T)
Toasinha(l—a—T)+fcosho(l—a—T)"

cota(f@a+ T —c)
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3 Fig. 7. Graphical determination of &
2 comparing different boundary condi-
tions (a f=1; b f=2m ¢ f=20).
1 The case of a boundary that acts as
a barrier corresponds to f =0, and
o
o 2 4 —— 9 . the boundary becomes lethal as f§
e approaches infinity. The decreasing
-2 c function is cot(x/4); the increasing
function is A(0, o, §)
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Using the formula for the cotangent of a difference and simplifying via identities
for hyperbolic functions yields

(@2~ B? cosh (1 —2a —T)
(@2 + p?) sinh (1 — T) + 2ap cosh a(1 — T
= h(a, o, ). (2.6)

Observe that h(a,a,f) > —o0 as « |0 and that h(a,« f) <0 for a<§p,
h(a, o, f) >0 for o> f. There are essentially three different cases of (2.6),
depending on whether § <=n/2T, B =n/2T, or B >n/2T, which are shown
schematically in Fig. 7 (a), (b) and (c), respectively.

If we have B ==/2T then (2.6) is first satisfied for o = n/2T = B, with no
dependence whatsoever on a. The biological interpretation is that the degree of
hostility of the exterior region as measured by the boundary condition is
equivalent to that of the unfavorable interior region, so the location of the
favorable interior region is irrelevant. If we move a away from a = (1~ T)/2
toward 0 or 1 — T, the numerator of (g, o, f) increases in absolute value for all
o # B.If B <n/2T, the first intersection of cot oT and h(a, «, f) must occur for
o > f, where h(a, «, f) is necessarily positive. Thus, increasing the absolute value
of the numerator of 4 increases k: so as a moves toward 0 or 1 — T, the value of
o where the first intersection occurs must decrease (since cot oT is decreasing) so
that 4,(m,(x)) decreases. On the other hand, if § > n/2T then the first intersec-
tion must occur for a < B, where k is negative. In that case increasing the
absolute value of the numerator decreases / and increases the value of « where
the intersection occurs, hence increasing A;(m,(x)). We may draw the following
conclusions: for m,(x) of the form (2.5), movinig the favorable region from the
center to either end of the interval increases 4,(m,(x)) if the exterior is relatively
hostile (f > #/2T) and decreases A,(m,(x)) if the exterior is relatively benign so
that many individuals that leave the environment will ultimately return
(f <=/2T). In mathematical terminology, the problem with mixed boundary
conditions shows the same behavior as the Dirichlet problem when f is large and
as the Neumann problem when § is small.

cotal =
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